CH 3 DISTANCE SPEED AND TIME

ANSWERS AND EXPLANATIONS

EXERCISE 1

1. (b) Let x be the length of the bridge.

Length of the train = 100 m

Speed of train = 72 km/hr

$$=\frac{72\times5}{18}$$
m/s

Time taken by train = 25 seconds.

$$\therefore 25 = \frac{100 + x}{72 \times \frac{5}{18}}$$

$$\Rightarrow 25 \times 72 \times \frac{5}{18} = 100 + x$$

$$\Rightarrow$$
 x = 500 - 100 = 400 m.

- (d) Train takes 20 seconds to cover its length and 36 seconds to cross the platform, it mean it has taken 16 second at 54 km/hr to cross the length of platform.
 - :. Length of the platform
 - = Distance \times Time
 - $= 54 \times 16 \text{ km / hr}$

$$= 54 \times 16 \times \frac{5}{18} \text{ m/sec}$$

- = 240 m.
- 3. (a) Train has 12 bogies. Each bogie is 15 metre long.

 \therefore Total length of bogie = 15×12

$$= 180$$

Since, train crosses in 18 second

$$\therefore \text{ Speed} = \frac{\text{Distance}}{\text{Time}} = \frac{\text{Length}}{\text{Time}} = \frac{180}{18} = 10$$

Due to some problem, 2 bogies were detached

 \therefore Remaining bogies = 12 - 2 = 10

 \therefore Total length of bogie = $15 \times 10 = 150$

Thus, time =
$$\frac{\text{distance}}{\text{speed}} = \frac{150}{10} = 15 \text{ sec}$$

4. (d) Relative speed of both trains

$$= 60 + 90 = 150 \text{ km} / \text{h}$$

Total distance = 1.10 + 0.9 = 2 km

.. Required time

$$= \frac{2 \times 60 \times 60}{150} = 48 \text{ seconds}.$$

5. (d) Let the car take n hr. to cover 385 km. Using the formula for sun of n terms of an A.P., we get

$$\frac{n}{2}[2 \times 40 + (n-1)5] = 385$$

or
$$\frac{n}{2}(80+5n-5)=385$$

or
$$80n + 5n^2 - 5n = 770$$

or
$$5n^2 + 75n - 770 = 0$$

$$\therefore$$
 n = 7 h

6. (c) Relative speed = 90 + 60 = 150 km/hr.

Total distance to be covered = 300 + 200 = 500 m

Time required

$$= \frac{500}{150 \times 1000} \times 3600 = 12 \text{ sec.}$$

7. (d) Speed = $\left(5 \times \frac{5}{18}\right)$ m/sec = $\frac{25}{18}$ m/sec.

Distance covered in 15 minutes

$$= \left(\frac{25}{18} \times 15 \times 60\right) \mathbf{m} = 1250 \ \mathbf{m}.$$

8. (a) Speed =
$$\left(\frac{750}{150}\right)$$
 m/sec = 5 m/sec

$$= \left(5 \times \frac{18}{5}\right) \text{km/hr} = 18 \text{ km/hr}.$$

9. (a) Time taken by first man
$$=\frac{54}{8} = \frac{27}{4}h$$

.. Time taken by second man

$$= \left(\frac{27}{4} - \frac{1}{2} - \frac{15}{60}\right) h = 6 h$$

∴ speed of second man =
$$\frac{54}{6}$$
 = 9km/h

Hence, ratio of their speeds = 8:9

10. (d) Total distance travelled

$$= \left[\left(50 \times \frac{5}{2} \right) + \left(70 \times \frac{3}{2} \right) \right]$$
 miles

$$= (125 + 105)$$
 miles $= 230$ miles.

11. (c) Number of gaps between 21 telephone posts

Distance travelled in 1 minute = (50×20) m

= 1000 m = 1 km.

$$\therefore \text{ Speed } = \frac{1}{1/60} \text{ km/h} = 60 \text{ km/h}$$

- (d) Required difference = $\frac{180}{3} \frac{180}{4} = 15$ km
- 13. (c) Let the husband and the wife meet after x minutes. 4500 metres are covered by Pradeep in 60 minutes.

In x minutes, he will cover $\frac{4500}{60}$ x metres.

Similarily,

In x minutes, his wife will cover $\frac{3750}{60}$ x m.

Now,
$$\frac{4500}{60}x + \frac{3750}{60}x = 726$$

$$\Rightarrow x = \frac{726 \times 60}{8250} = 5.28 \text{min}$$

14. (c) Speed =
$$\frac{150+45}{20} = \frac{195}{20} \text{ m/s} = \frac{195}{20} \times \frac{18}{5} \text{ km/h}$$

$$= 35.1 \text{ km} / \text{h} \approx 35 \text{ km} / \text{h}$$

15. (a) Speed of train =
$$\frac{150 + 250}{30} = \frac{400}{30} = \frac{40}{3}$$
 m/s

:. Required time =
$$\frac{150+130}{40/3} = \frac{280 \times 3}{40} = 21 \text{sec}$$

16. (e) Distance covered by the car = $80 \times 10 = 800$

:. Speed =
$$\frac{800}{8} = 100 \,\text{km/hr}$$

$$\therefore$$
 Speed gain = 100 - 80 = 20 km/hr

.. Speed =
$$\frac{800}{8} = 100 \,\text{km/hr}$$

.. Speed gain = $100 - 80 = 20 \,\text{km/hr}$
17. (c) Speed of the car $A = \frac{5}{6} \times 90 = 75 \,\text{km/hr}$

$$\therefore$$
 Reqd time = $\frac{88}{90+75} \times 60 = 32$ minutes

18. (b) Relative speed of the trains

$$= (72 - 54) \text{ km/h} = 18 \text{ km/h}$$

$$=$$
 $\left(18 \times \frac{5}{18}\right)$ m/sec = 5 m/sec.

Time taken by the trains to cross each other

= Time taken to cover (100 + 120) m at 5 m/sec

$$=\left(\frac{220}{5}\right)$$
 sec = 44 sec.

19. (a) Let speed of train be S km/h.

Speed of train relative to man

$$= [S - (-6)] \text{ km/h}$$

$$= (S+6) \times \frac{5}{18} \text{m/s}$$

Now
$$(S+6) \times \frac{5}{18} = \frac{100}{18/5}$$

$$\Rightarrow$$
 S = 94 m/s

20. (b) Speed of the train relative to man

=
$$(68 - 8)$$
 kmph = $\left(60 \times \frac{5}{18}\right)$ m/sec

$$=\left(\frac{50}{3}\right)$$
 m/sec.

Time taken by the train to cross the man

$$= \left(150 \times \frac{3}{50}\right) \sec = 9 \sec.$$

- 21. (b) Distance covered by train A before the train B leaves Mumbai Central = $60 \times 3 = 180 \text{ km}$
 - .. Time taken to cross each other

$$=\frac{180}{12} = 15 \text{ hour}$$

- \therefore Reqd time = 2 pm + 15 = 5 am on the next day
- 22. (e) Speed of the car = $\frac{\text{Distance Covered}}{\text{Time Taken}}$

$$=\frac{816}{12}$$
 = 68 kmph.

23. (c) Speed of bus = $\frac{\text{Distance covered}}{\text{Time taken}}$

$$=\frac{2924}{43}$$
 = 68 kmph

24. (e) Speed of train = $\frac{1560}{26}$

= 60 kmph.

- 25. (a) Distance covered = Speed \times Time = $49 \times 7 = 343$ km
- 26. (e) Time taken to cover a distance of 45 kms

$$=\frac{45}{15} = 3 \text{ hour}$$

Time taken to cover a distance of 50 kms

$$=\frac{50}{25}=2 \text{ hour}$$

Time taken to cover distance of 25 kms

$$=\frac{25}{10}$$
 = 2.5 hour

Total distance = (45 + 50 + 25) kms = 120 kms

Total time = (3 + 2 + 2.5) hour = 7.5 hour

 \therefore Required average speed = $\frac{120}{7.5}$ = 16 kmph

27. (e) Let the distance between the village and the school be x km.

According to the question,

$$\frac{x}{4} + \frac{x}{2} = 6$$

or,
$$\frac{x+2x}{4} = 6$$

or,
$$3x = 6 \times 4$$

$$x = \frac{6 \times 4}{3} = 8 \text{ km}$$

28. (a) Speed of train

$$=\frac{(200+400)}{36}\times\frac{18}{5}$$

= 60 km/hr.

29. (c) Distance covered in 18 seconds

$$= 90 \times \frac{5}{18} \times 18 = 450 \, m$$

:. length of platform

$$= 450 - 160 = 290 \text{ m}$$

30. (b) Stoppage minute per hour

$$=\frac{(64-48)\times 60}{64}$$
 = 15 minutes.

31. (c) Speed of car

$$=\frac{540}{9}$$

= 60 kms/hr.

Speed of bike

$$= 60 \times 2 \times \frac{2}{3}$$

= 80 kms/hr.

Distance covered by bike

$$= 80 \times 5$$

$$=400 \text{ kms}$$

32. (c) Speed of bus

$$=\frac{480}{12} = 40 \text{ km/hr}$$

Speed of train

$$= 40 \times \frac{9}{5} = 72 \text{ km/hr}$$

Speed of car

$$=\frac{72}{18}\times13 = 52 \text{ km/hr}$$

Distance covered by car

$$= 52 \times 5 = 260 \text{ km}$$

33. (a) Length of platform

$$= 126 \times \frac{5}{18} \times 24 - 300 = 540 \text{ meter}$$

$$\therefore \text{ Speed of man} = \frac{540}{5 \times 60}$$

34. (e) Speed of train A = $\frac{280}{14}$ = 20 meter/second

Length of train B = $20 \times 35 - 280$ meter

- = 700 280 meter
- = 420 meter

35. (b) Distance = 64×8

$$= 512 \text{ km}$$

$$\therefore \text{ Speed} = \frac{512}{6}$$

= 85 km/hr (approx.)

36. (b) Distance covered in first two hour

$$= 70 \times 2 = 140 \text{ km}$$

Distance covered in next two hour

$$= 80 \times 2 = 160 \text{ km}$$

Distance covered in first four hour

$$140 + 160 = 300 \text{ km}$$

Remaining distance = 345 - 300 = 45 km. Now, this distance will be covered at the speed of 90 km/hr.

$$\therefore$$
 Time taken = $\frac{45}{90} = \frac{1}{2}$ hour

Total time =
$$4 + 1/2 = 4 \frac{1}{2}$$
 hour

37. (b) Clearly, time taken by him if he walked both ways = 6 hr 30 min + 2 hr 10 min = 8 hr 40 min.

EXERCISE 2

(b) Let the length of the two trains be l km and l/2 km respectively and length of the platform be x km.

then,
$$l + \frac{l}{2} = (36 + 54) \times \frac{12}{60 \times 60} = \frac{18}{60} = \frac{3}{10}$$

$$\Rightarrow l = \frac{1}{5}$$

Also, we have x + l

$$=36\times\frac{3}{2\times60}=\frac{9}{10}$$

$$\Rightarrow$$
 $x = \frac{9}{10} - \frac{1}{5}$

$$\Rightarrow \qquad x = \frac{7}{10} \text{km} = \frac{7}{10} \times 1000 \text{m} = 700 \text{m}.$$

2. (c) We know that, the relation in time taken with two different modes of transport is

$$t_{\text{walk both}} + t_{\text{ride both}} = 2 (t_{\text{walk}} + t_{\text{ride}})$$

$$\frac{31}{4} + t_{\text{ride both}} = 2 \times \frac{25}{4}$$

$$\Rightarrow t_{\text{ride both}} = \frac{25}{2} - \frac{31}{4} = \frac{19}{4} = 4\frac{3}{4} \text{ hrs}$$

(d) Let the distance between each pole be x m.
 Then, the distance up to 12th pole = 11 x m

Speed =
$$\frac{11x}{24}$$
 m/s

Time taken to covers the total distance of 19x

$$= \frac{19x \times 24}{11x} = 41.45s$$

- 4. (c) After 5 minutes (before meeting), the top runner covers 2 rounds i.e., 400 m and the last runner covers 1 round i.e., 200 m.
 - .. Top runner covers 800 m race in 10 minutes.
- 5. (d) Let after t hour they meet then,

$$3t + 4t = 17.5 \Rightarrow t = 2.5$$

- \therefore Time = 10 am + 2.5 h = 12 : 30pm
- 6. (a) Let original speed = S km/h

Here, distance to be covered is constant

$$\therefore S \times 8 = (S+5) \left(\frac{20}{3}\right)$$

$$\Rightarrow 8S - \frac{20}{3}S = \frac{100}{3} \Rightarrow S = \frac{100}{4} = 25 \text{ km/h}$$

- 7. (d) Let C₁ takes t hr Then,
 - : Distance is same.

$$\therefore 30t = 45 \left(t - \frac{5}{2} \right)$$

$$\Rightarrow t = \frac{15}{2} \text{hrs}$$

$$\therefore \text{ Distance} = 30 \times \frac{15}{2} = 225 \text{km}$$

8. (a) $d = \text{product of speed} \left[\frac{\text{difference of time}}{\text{difference of speed}} \right]$

$$d = \frac{4 \times 5}{60} \left[\frac{10 - (-5)}{5 - 4} \right]$$
 [Here, -ve sign indicates before the schedule time]

$$\Rightarrow$$
 d = 5 km

9. (a) Due to stoppages, it covers 20 km less.

Time taken to cover
$$20km = \frac{20}{80}h = \frac{1}{4}h$$

$$= \frac{1}{4} \times 60 \, \text{min} = 15 \, \text{min}$$

10. (b) If new speed is $\frac{a}{b}$ of original speed, then

usual time
$$\times \left(\frac{b}{a} - 1\right) =$$
change in time

$$\therefore$$
 usual time $\times \left(\frac{4}{3}-1\right) = \frac{1}{3}$

$$\Rightarrow$$
 usual time = $\frac{1}{3} \times 3 = 1 \text{ hr}$

11. (b) Let the distance between the two stations be x km.

Then,
$$\frac{x}{50} - \frac{10}{6} = \frac{x}{30} - \frac{50}{6}$$

$$\Rightarrow \frac{x}{50} - \frac{1}{6} = \frac{x}{30} - \frac{5}{6}$$

or
$$\frac{x}{30} - \frac{x}{50} = \frac{2}{3}$$

or
$$x = 50 \text{ km}$$

Thus distance between the station A and B = 50 km

12. (c) Let the speed of the bus be x km / h.

then speed of the car = (x + 25) km / h

$$\therefore \frac{500}{x} = \frac{500}{x + 25} + 10$$

$$\Rightarrow x^2 + 25x - 1250 = 0 \Rightarrow x = 25$$

Thus speed of the bus = 25 km/h

Speed of the car = 50 km/h

Alternative:

Difference in speeds 25 km / hr is in only option (c).

13. (a) Distance to be covered by the thief and by the owner is same.

Let after time 't', owner catches the thief.

$$\therefore 40 \times t = 50 \left(t - \frac{1}{2} \right)$$

$$\Rightarrow 10t = 25 \Rightarrow t = \frac{5}{2}hr = 2\frac{1}{2}hr$$

14. (a) A covers 3.5 km before he meets B in

$$(18 \times 3.5 + 3) = 66 \text{ min} = \frac{66}{60} = \frac{11}{10} \text{h}$$

Now, B covers a distance of 5.5 km in $\frac{11}{10}$ hour

$$\Rightarrow$$
 B's speed = $\frac{11}{2} \times \frac{10}{11} = 5 \text{ km/h}$

15. (a) Average speed = $\frac{\text{Total distance}}{\text{Total time}}$

$$=\frac{400\times4\times9}{88+96+89+87}=\frac{400\times4\times9}{360}$$

= 40 metres /minutes

16. (a) Let the speed of car = S km /h.

Also, let previous time = t hr. Then,

$$420 = St$$
 ... (i)

Also,
$$420 = (S + 10)(t - 1)$$

$$\Rightarrow 420 = (S+10) \left(\frac{420}{S} - 1 \right) [By (i)]$$

$$\Rightarrow$$
 S² + 10 S - 4200 = 0

$$\Rightarrow S^2 + 10 S - 4200 = 0$$

$$\Rightarrow (S + 70) (S - 60) = 0$$

$$\Rightarrow S = 60 \text{ km/h}$$

$$\Rightarrow$$
 S = 60 km/h

17. (c) Total distance travelled in 12 hour

$$= (35 + 37 + 39 + \dots \text{ upto } 12 \text{ terms})$$

This is an A.P. with first term a = 35,

number of terms n = 12, common difference

d = 2.

.. Required distance

$$= \frac{12}{2} [2 \times 35 + (12 - 1) \times 2] = 6(70 + 22) = 552 \text{ km}.$$

18. (b) Average speed = $\frac{2v_1v_2}{v_1 + v_2} = \left(\frac{2 \times 40 \times 20}{40 + 20}\right) \text{km/hr}$

$$=$$
 $\left(\frac{80}{3}\right)$ km/hr = 26.67 km/hr.

19. (b) Due to stoppages, it covers 9 km less.

Times taken to cover 9 km

$$= \left(\frac{9}{54} \times 60\right) \min = 10 \min.$$

20. (d) Distance covered in 2 hr 15 min,

i.e.
$$2\frac{1}{4}$$
hr = $\left(80 \times \frac{9}{4}\right)$ hrs = 180 km

Time taken to cover remaining distance

$$= \left(\frac{350 - 180}{60}\right) hrs = \frac{17}{6} hrs = 2\frac{5}{6} hrs$$

= 2 hr 50 min.

Total time taken = (2 hr 15 min + 2 hr 50 min)

= 5 hr 5 min.

So, Anna reached city A at 10.25 a.m.

21. (a) Since A and B move in the same direction along the circle, so they will first meet each other when there is a difference of one round between the two.

Relative speed of A and B

$$= (6-1) = 5$$
 rounds per hour.

Time taken to complete one round at this speed

$$=\frac{1}{5}$$
 hr = 12 min.

Hence, they shall first cross each other at 7:42 a.m.

22. (c) Relative speed = (2 + 3) = 5 rounds per hour.

So, they cross each other 5 times in an hour and 2 times in half an hour.

Hence, they cross each other 7 times before 9 :.30 a.m.

23. (c) Their relative speeds

$$= (4.5 + 3.75) = 8.25 \text{ km/h}$$

Distance = 726 metres =
$$\frac{726}{1000}$$
 = 0.726 km

Required time =
$$\frac{0.726}{8.25} \times 60 = 5.28 \text{ min}$$

24. (c) Remaining distance = 3 km

and remaining time

$$=\left(\frac{1}{3}\times45\right)$$
 min = 15 min. = $\frac{1}{4}$ hr.

- \therefore Required speed = (3×4) km/h
- = 12 km / hr.
- 25. (a) Let the duration of the flight be x hour Then,

$$\frac{600}{x} - \frac{600}{x + \frac{1}{2}} = 200 \Longrightarrow \frac{600}{x} - \frac{1200}{2x + 1} = 200$$

$$\Rightarrow$$
 x (2x + 1) = 3

$$\Rightarrow 2x^2 + x - 3 = 0$$

$$\Rightarrow$$
 $(2x+3)(x-1)=0$

- \Rightarrow x = 1 hr. [neglecting the -ve value of x].
- 26. (c) Here, distance to be covered by the thief and by the owner is same.

Let after 2:30 p. m., owner catches the thief in t hr

Then,
$$60 \times t = 75 \left(t - \frac{1}{2} \right) \implies t = \frac{5}{2} \text{ hrs}$$

So, the thief is overtaken at 5 p.m.

27. (d) Let the speed in return journey be x km / hr. Then, speed in onward journey

$$=\frac{125}{100}x = \left(\frac{5}{4}x\right) \text{km/hr}.$$

Average speed

$$= \left(\frac{2 \times \frac{5}{4} \times x}{\frac{5}{4} \times x}\right) \text{km/hr} = \frac{10x}{9} \text{km/hr}.$$

$$\therefore \left(800 \times \frac{9}{10x}\right) = 16 \Rightarrow x = \left(\frac{800 \times 9}{16 \times 10}\right) = 45.$$

So, speed in onward journey

$$=\left(\frac{5}{4}\times45\right)$$
 km / hr = 56.25 km / hr.

28. (c) Let the length of the journey be x km.

Suppose speed of the train be y km/h.

 $\therefore \qquad \text{Time taken to cover } x \text{ km} = \frac{x}{y} \text{ hour}$

$$\therefore \frac{x}{y+6} = \frac{x}{y} - 4, \frac{x}{y-6} = \frac{x}{y} + 6$$

Solving these equations, we get

$$y = 30, x = 720.$$

- :. Length of the journey = 720 km.
- 29. (a) Relative speed of the thief and policeman = (11 10) km/h = 1 km/h.

Distance covered in 6 minutes

$$=\left(\frac{1}{60}\times6\right)$$
km $=\frac{1}{10}$ km $=100$ m.

:. Distance between the thief and policeman

$$= (200 - 100) \text{ m} = 100 \text{ m}.$$

30. (d) Relative speed = (3.5 + 4.5) = 8 kmph.

Time to meet = 32/8 = 4 hour

So when they meet at 5 pm, one will have walked $3.5 \times 4 = 14$ km and the other will have walked $4.5 \times 4 = 18$ km.

31. (d)

Time taken to travel 96 miles = $\frac{96}{11}$ hr = 8 hr 43

minutes

During the journey of 96 miles, he has to stop for 13 times to change the horse.

∴ Total stoppage time = $13 \times 5 = 65$ mins. = 1 hr. 5 mins.

Hence the total time = 8 hr 43 mins + 1 hr. 5 mins.

- = 9 hr 48 mins.
- 32. (d) Let the speed of Ajay be V and the speed of Bhuvan and Subbu be 1 and 4 respectively.

Then OA = 4 and OB = 4.

At 12:00 noon.

Let Ajay be at C at 12:00 noon at a distance of V from A (towards B)

.. Time taken for them to meet from 12:00 noon.

$$= \frac{4 - V}{1 + V}$$

Since V is not known $\frac{4-V}{1+V}$ cannot be determined.

33. (d) Let the speed of the second train be x km/h

The relative speed = (50 + x) km/h

These trains will cross each other in a time equivalent of covering a distance equal to 108 + 112, i.e. 220 meters in 6 seconds, running a speed of (50 + x) km/h

$$\therefore \frac{1}{50 + x} \times \frac{220}{1000} = \frac{6}{3600}$$

$$\Rightarrow$$
 $x = 82$

- : The speed of the second train = 82 km/h.
- 34. (d) Let the length of the first train be x metres and the length of the bridge be y metres.
 - ... The first train running with the speed of 90 km/h crosses the bridge by covering a distance of (x + y) meters in 36 seconds i.e. The first train crosses the bridge in 36 seconds running with the speed of 25 meters per second.

$$x + y = 36 \times 25 = 900$$

The second train crosses the bridge by covering a distance of [(x - 100) + y] meters with the

speed of 45 km/h, i.e. with the speed of $12\frac{1}{2}$

metres per second.

Since x + y = 900, therefore the second train crosses the bridge by covering a distance of 800

meters @ $12\frac{1}{2}$ meters per second, i.e. the second

train crosses the bridge in $\frac{800}{12\frac{1}{2}} = \frac{800 \times 2}{25} = 64$

seconds.

- 35. (a) Time = $\frac{225}{6 \times \frac{5}{18}} = 135 \sec = 2\frac{1}{4} \text{ min.}$
- 36. (a) Relative speed

$$= \left(\frac{280}{9}\right) \text{m/sec} = \left(\frac{280}{9} \times \frac{18}{5}\right) \text{ kmph}$$

= 112 kmph.

.. Speed of goods train

= (112 - 50) kmph = 62 kmph.

37. (b) Let us name the trains as A and B. Then, (A's speed): (B's speed)

Note that the state of the stat

 $=\sqrt{b}:\sqrt{a}=\sqrt{16}:\sqrt{9}=4:3.$

38. (a) Let actual speed of train = $S_T \text{ km/h}$.

Then,
$$S_T - 6 = \frac{75}{18} \times \frac{18}{5} = 15$$

 \Rightarrow S_T = 21 km/h

Now, let speed of second man = S_m

$$21 - S_m = \frac{75}{15} \times \frac{18}{5} = 18$$

$$\Rightarrow S_m = 3 \text{km/h}$$

39. (c) Speed of train relative to jogger

= (45 - 9) km/h = 36 km/h

$$= \left(36 \times \frac{5}{18}\right) m / sec = 10 m / sec.$$

Distance to be covered = (240 + 120)

m = 360 m.

$$\therefore$$
 Time taken = $\left(\frac{360}{10}\right)$ sec = 36 sec.

40. (d) Relative speed = (40 - 20) km/h

$$= \left(20 \times \frac{5}{18}\right) \text{ m/sec} = \left(\frac{50}{9}\right) \text{ m/sec}.$$

Length of faster train

$$=\left(\frac{50}{9}\times 5\right)m = \frac{250}{9}m = 27\frac{7}{9}m$$

41. (d) Let speed of trains be S₁ m/s and S₂ m/s.

Then,
$$S_1 - S_2 = \frac{130 - 110}{60} = 4$$
 ... (i)

and
$$S_1 + S_2 = \frac{130 + 110}{3} = 80$$
 ... (ii)

on solving (i) and (ii), we get

$$S_1 = 42 \text{ m/s}$$
, $S_2 = 38 \text{ m/s}$

42. (b) Let actual speed of train = S m /sec and length of train = L m.

Then,
$$S - \frac{2 \times 5}{18} = \frac{L}{9}$$

$$\Rightarrow$$
 9S = L + 5 ...

and
$$S-4 \times \frac{5}{18} = \frac{L}{10}$$

$$\Rightarrow$$
 90 S = 9L +100 ... (ii)

By (i) & (ii), we get L = 50 m.

43. (a) Let speed of man = S km/h. Then,

Distance covered in 15 min = Distance covered in 12 min

$$16 \times \frac{15}{60} = \frac{12}{60} [16 + S]$$

$$\Rightarrow$$
 16 + S = 20 \Rightarrow S = 4 km/h

44. (a) Let speed of man = S km/h. Then,

$$36 \times \frac{14}{60} = \frac{18}{60} [36 - S]$$

$$\Rightarrow$$
 36 - S = 28

$$\Rightarrow$$
 S = 8 km/h.

45. (d) 4.5 km/h = $\left(4.5 \times \frac{5}{18}\right)$ m/sec = 1.25 m/sec,

& 5.4 km/h =
$$\left(5.4 \times \frac{5}{18}\right)$$
 m/sec = 1.5 m/sec.

Let the speed of the train be S m/sec.

Then,
$$(S - 1.25) \times 8.4 = (S - 1.5) \times 8.5$$

$$\Rightarrow$$
 8.4S - 10.5 = 8.5S - 12.75

$$\Rightarrow$$
 0.1S = 2.25

$$\Rightarrow$$
 S = 22.5.

$$\therefore$$
 Speed of the train = $\left(22.5 \times \frac{18}{5}\right)$ km/h

= 81 km/h

46. (b) Let the speeds of the two trains be S_1 m/sec and S_2 m/sec respectively. Then, length of the first train = $27S_1$ metres, and length of the second train = $17S_2$ metres.

$$\therefore \frac{27S_1 + 17S_2}{S_1 + S_2} = 23 \Rightarrow 27S_1 + 17S_2 = 23S_1 + 23S_2$$

$$\Rightarrow 4S_1 = 6S_2 \Rightarrow \frac{S_1}{S_2} = \frac{3}{2}.$$

47. (c) Relative speed of the trains = (40 + 20)

$$= 60 \text{ m/s}$$

Distance =
$$(120 + 120) = 240 \text{ m}$$

Time taken by trains to cross each other completely

$$=\frac{240}{60}=4s$$

EXERCISE 3

 (a) Let each side of the square be x km and let the average speed of the plane around the field be y km/h. Then,

$$\frac{x}{200} + \frac{x}{400} + \frac{x}{600} + \frac{x}{800} = \frac{4x}{y}$$

$$\Rightarrow \frac{25x}{2400} = \frac{4x}{y} \Rightarrow y = \left(\frac{2400 \times 4}{25}\right) = 384.$$

- ∴ Average speed = 384 km/h.
- (b) Rest time = Number of rest × Time for each rest= 4 × 5 = 20 minutes

Total time to cover 5 km

$$= \left(\frac{5}{10} \times 60\right) \text{ minutes} + 20 \text{ minutes} = 50 \text{ minutes}.$$

(d) Let the average speed be x km/h.
 and Total distance = y km. Then,

$$\frac{0.2}{10}y + \frac{0.6}{30}y + \frac{0.2}{20}y = \frac{y}{x}$$

$$\Rightarrow x = \frac{1}{0.05} = 20 \text{km/h}$$

- 4. (a) Let the length of the journey =x km.
 - ... Journey rides by horse cart

$$=x\left(1-\frac{1}{2}-\frac{1}{3}\right)=\frac{1}{6}x \text{ km}.$$

Then, total time taken to complete journey

$$=\frac{31}{5}$$
hr

$$\Rightarrow t_1 + t_2 + t_3 = \frac{31}{5}$$

$$\Rightarrow \frac{x}{2} \times \frac{1}{4} + \frac{x}{3} \times \frac{1}{12} + \frac{x}{6 \times 9} = \frac{31}{5}$$

$$\Rightarrow x = \frac{31}{5} \times \frac{216}{37} = 36.2 \text{km} \approx 36 \text{km}$$

5. (b) Let the distance between X and Y be x km. Then, the speed of A is $\frac{x}{4}$ km/h and that of B is $\frac{2x}{7}$

km/h.

$$\frac{2x}{7} \text{km/h} \underbrace{\frac{x}{7} \text{km/h}}_{X} \underbrace{\frac{x}{4} \text{km/h}}_{Y}$$

Relative speeds of the trains

$$=\left(\frac{x}{4} + \frac{2x}{7}\right) = \frac{15x}{28} \text{ km/h}$$

Therefore the distance between the trains at 7 a.m.

$$= x - \frac{x}{2} = \frac{x}{2} \text{ km}$$

Hence, time taken to cross each other

$$= \frac{\frac{x}{2}}{\frac{15x}{28}} = \frac{x}{2} \times \frac{28}{15x} = \frac{14}{15} \times 60 = 56 \,\text{min}$$

Thus, both of them meet at 7:56 a.m.

6. (a) Let the distance be x km. Let speed of train be y km/h. Then by question, we have

$$\frac{x}{y+4} = \frac{x}{y} - \frac{30}{60}$$
 ...(i)

and
$$\frac{x}{y-2} = \frac{x}{y} + \frac{20}{60}$$
 ...(ii)

On solving (i) and (ii), we get x = 3y

Put x = 3y in (i) we get

$$\frac{3y}{y+4} = 3 - \frac{1}{2} \quad \Rightarrow y = 20$$

Hence, distance = $20 \times 3 = 60$ km.

7. (a) Let the speed of the goods train be x kmph.
Distance covered by goods train in 10 hour
= Distance covered by express train in 4 hour
∴ 10x = 4 × 90 or x = 36.

So, speed of goods train = 36 kmph.

8. (b) usual time
$$\times \left(\frac{4}{5} - 1\right) = \frac{-30}{60}$$

$$\Rightarrow$$
 usual time = $\frac{1}{2} \times 5 = 2\frac{1}{2}$ hr

(b) Due to stoppages the train travels
 (45 - 36) = 9 km less in an hour than it could have travelled without stoppages.

Thus train stops per hour for $\frac{9}{45} \times 60 = 12 \text{ min.}$

10. (c) Let speed of jogging be x km/h.

Total time taken

$$= \left(\frac{9}{6} \text{ hrs} + 1.5 \text{ hrs}\right) = 3 \text{ hrs.}$$

Total distance covered = (9 + 1.5x) km.

$$\therefore \frac{9+1.5x}{3} = 9 \Rightarrow 9+1.5x = 27$$

$$\Rightarrow \frac{3}{2}x = 18 \Rightarrow x = \left(18 \times \frac{2}{3}\right) = 12 \text{ kmph.}$$

 (a) Let speed of the train be x km/h and that of the car be y km/h.

Now,
$$\frac{160}{x} + \frac{600}{y} = 8$$

and
$$\frac{240}{x} + \frac{520}{y} = \frac{41}{5}$$

Solving (i) and (ii), we have x = 80 km/h and y = 100 km/h.

12. (b) Let the speed of the train and the car be x km/h and y km/h, respectively.

Now,
$$\frac{120}{x} + \frac{480}{y} = 8$$

and
$$\frac{200}{x} + \frac{400}{y} = \frac{25}{3}$$

From (i),

$$120y + 480x = 8xy$$
 and

From (ii),

$$200y + 400x = \frac{25}{3}xy$$

From (iii) and (iv),

$$\frac{120y + 480x}{8} = \frac{3(200y + 400x)}{25}$$

or
$$15y + 60x = 24y + 48x$$

or
$$12x = 9y$$
 or $\frac{x}{y} = \frac{3}{4}$

- 13. (c) Let the original planned time of the flight be x hour
 - :. The average speed of the flight

$$= \frac{6000}{x} \text{ km/h}$$

If the average speed is

$$\left(\frac{600}{x} - 400\right)$$
 km/h,

then the time of the flight is

$$\left(x + \frac{1}{2}\right)$$
 hour

$$\therefore \left(x + \frac{1}{2}\right) \left(\frac{6000}{x} - 400\right) = 6000$$

$$\Rightarrow -400x + \frac{3000}{x} - 200 = 0$$

$$\Rightarrow$$
 $-4x + \frac{30}{x} - 2 = 0$

$$\Rightarrow -4x^2 + 30 - 2x = 0$$

$$\Rightarrow 4x^2 + 2x - 30 = 0$$

$$\Rightarrow 2x^2 + x - 15 = 0$$

$$\Rightarrow \qquad x = \frac{-1 \pm \sqrt{1 + 120}}{4} = \frac{-1 \pm 11}{4}$$

$$= \frac{10}{4} = \frac{5}{2} = 2\frac{1}{2}$$

14. (c) Let the speed of the car be x km/h and y km/h, respectively.

Their relative speeds when they are moving in same direction = (x - y) km/h.

Their relative speeds when they are in opposite directions = (x + y) km/h.

Now,
$$\frac{70}{x+y} = 1$$

or
$$x + y = 70$$
 (

and
$$\frac{70}{(x-y)} = 7$$
 or $x - y = 10$ (ii)

Solving (i) and (ii), we have

$$x = 40$$
 km/h and $y = 30$ km/h.

15. (c) Here, distance to be covered is constant.

Suppose they meet x hour after 14.30 hr

Then,
$$60x = 80 (x - 2)$$
 or $x = 8$.

- \therefore Required distance = (60×8) km = 480 km.
- 16. (d) Let the usual speed of the plane be x km/h
 - :. Time taken in covering the distance of 1500 km

$$=\frac{1500}{x}$$
 hour

$$\therefore \frac{1500}{x+250} = \frac{1500}{x} - \frac{1}{2}$$

$$\Rightarrow$$
 3000 x = 3000 (x + 250) - x(x + 250)

$$\Rightarrow$$
 x² + 250 x - 3000 × 250 = 0

$$\Rightarrow x = \frac{-250 \pm \sqrt{62500 + 30000000}}{2}$$

$$= \frac{-250 + 1750}{2} = 750 \,\text{km/h}$$

17. (c) Usual time =
$$\frac{-10}{\left(\frac{5}{6} - 1\right)}$$
 = 60 min

18. (b)
$$\frac{\text{lst man's speed}}{2\text{nd man's speed}}$$

$$=\frac{\sqrt{b}}{\sqrt{a}}=\frac{\sqrt{b}}{\sqrt{a}}=\sqrt{\frac{4\frac{4}{5}}{3\frac{1}{3}}}$$

$$=\sqrt{\frac{24}{5}\times\frac{3}{10}}=\sqrt{\frac{36}{25}}=\frac{6}{5}$$

$$\therefore \frac{12}{2 \text{nd man's speed}} = \frac{6}{5}$$

$$\therefore$$
 2nd man's speed = $\frac{60}{6}$ = 10 km/hr.

19. (a) Let speed by
$$x \Rightarrow \frac{50}{x}$$
 = time taken

also
$$\frac{300}{3x} = \frac{100}{x} = \text{time taken.}$$

Hence ratio is 1:2.

20. (d) Net distance gained by car over the bus = 40 + 60 = 100m, in 20 sec.

Time =
$$\frac{\text{Distance}}{\text{Re lative speed}} \Rightarrow 20 = \frac{100}{\left(36 \times \frac{5}{18}\right) - \text{S}_2}$$

$$\Rightarrow$$
 S₂ = 5 m/s = 18 kmph.

21. (d) Let the distance be x.

Ratio of speeds of 3 car = 2:3:4

$$\therefore$$
 $S_1 = \frac{2}{9}$, $S_2 = \frac{3}{9}$, $S_3 = \frac{4}{9}$

Now, as we know, distance = speed × time

$$\therefore$$
 $x = \frac{2}{9}T_1, x = \frac{3}{9}T_2, x = \frac{4}{9}T_3$

$$\Rightarrow \frac{T_1}{x} = \frac{9}{2}, \frac{T_2}{x} = \frac{9}{3}, \frac{T_3}{x} = \frac{9}{4}$$

$$\therefore \quad \frac{T_1}{x} : \frac{T_2}{x} : \frac{T_3}{x} = \frac{9}{2} : \frac{9}{3} : \frac{9}{4}$$

$$\equiv 108:72:54 \equiv 6:4:3$$

- Required ratio = 6:4:3.(b) Radius of circular track = 100m

:. Circumference of track

$$= 2\pi \times 100 = 200 \times \frac{22}{7}$$

Total distance =
$$200 \times \frac{22}{7}$$

Now, time taken to complete 1 revolution

.. Speed of the cyclist

$$=\frac{200\times\frac{22}{7}}{2}=\frac{200\times22}{2\times7}$$

$$=\frac{2200}{7}=314.28$$

 $\approx 314 \text{ m/min}$

23. (d) Let speed of car = x km / hrLet speed of pedestrian = y = 2km / hr

$$\therefore$$
 Relative speed = $(x - 2)$ km / hr

:. According to the question,

$$(x-2) \times \frac{6}{60} = 0.6 \implies x-2 = 6$$

- \Rightarrow x = 8 km / h
- 24. (a) Let the speed of the Bus which is moving towards East is x km/hr.

Since, speed of bus moving towards North is 5 greater than the speed of Ist bus

$$\therefore$$
 speed = $(x + 5)$ km/hr.

Now, time = 2 hr.

 \therefore Distance travelled by the first bus in two hour,

$$OE - 2x$$

and distance travelled by the second bus in two hour, ON=2(x+5)

Also,
$$NE = 50 \text{ km}$$
 (given)

.. By Pythagorus theorem, we have

$$(ON)^2 + (OE)^2 = (NE)^2$$

$$\Rightarrow$$
 [2 (x + 5)]² + (2x)² = (50)².

$$\Rightarrow$$
 4 (x² +2 5 + 10x) + 4x² = 2500

$$\Rightarrow$$
 8x² + 40 x - 2400 = 0

$$\Rightarrow x^2 + 5x - 300 = 0$$

$$\Rightarrow$$
 x = 15, -20 (x \neq -20)

Hence, speed of the slower bus = 15 km/hr.

25. (c) Let the length of the course be x m.

then speed of Muan =
$$\frac{x}{90}$$
 (: $1\frac{1}{2}$ m in = 90 sec)

and speed of Sanjay =
$$\frac{x-10}{90}$$

Since, Muan ran 40 m and Sanjay ran 39 m

$$\therefore \text{ Time taken by Muan} = \frac{40 \times 90}{x} \qquad \dots (1)$$

and Time taken by Sanjay =
$$\frac{39 \times 90}{x - 10}$$
(2)

Since, time taken by both is same.

$$\therefore$$
 (1) = (2) gives

$$\frac{40\times90}{x} = \frac{39\times90}{x-10}$$

$$\Rightarrow 40x - 400 = 39x$$

$$\Rightarrow x = 400m$$
.

26. (c) Let the speed of train be x km/hr and the speed of second person be y km/hr.

Then, according to the question, we have

$$(x-6) \times \frac{15}{2 \times 60 \times 60} = \frac{75}{1000}$$

$$\Rightarrow x - 6 = 36 \Rightarrow x = 42 \qquad \dots (1)$$

and
$$(x-y) \times \frac{27}{4 \times 60 \times 60} = \frac{75}{1000}$$

$$\Rightarrow x - y = 40$$

From (1),
$$42 - y = 40 \implies y = 2$$
.

Hence, speed of second person = 2 km/hr.

27. (a) Time difference between 11 a.m. and 2 p.m.

$$= 3 \text{ hr}$$

.. Distance covered by train A in 3 hr

$$=3\times60$$

= 180 km

Now, Train B gains = 72 - 60

$$= 12 \text{ km} / \text{hr}$$

.. Train A and Train B will meet after

$$\frac{180}{12}$$
 hr = 15 hr

They will meet at 2 p.m. + 15 hr = 5 a.m.

The time will be 5 a.m. on the next day.

28. (b) Total time taken by person = 6 hr

Total distance covered by person = 285 km

Now, person complete his journey in two stages.

- :. In first part of Journey,time
 - = 3 hr and in second part
 - = 3 hr

Now, Distance covered in first part of Journey(which is by bus)

- $= 40 \times 3 = 120 \text{ km}$
- :. Distance covered in second journey (which is by train)
 - = Total distance Distance in1st part of Journey
 - = 285 120 = 165 km.
- 29. (d) Given, A can beat B by 60 metres in race of 600 m.
 - ... When A run 600 meter

B will run = 600 - 60 = 540 meter

Similarly, B can beat C by 25 metres in race of 500 m.

.. When B run 500 meter

C will run = 500 – 25 = 475 meter

∴When B run 1 meter then C will run

$$=\frac{475}{500}$$
n

.. When B run 540 meter then C will run

$$=\,\frac{475\!\times\!450}{500}m$$

= 513 meter

Thus, when A run 600 meters C will run = 513 meter

- ... When Arun 1 meter, C will run
- $=\frac{513}{600}$ m
- ... When A run 400 meter, C will run

$$= \frac{513 \times 400}{600}$$

- = 342 meter
- \therefore A beats C by 400 342 = 58 meters

Hence, A can beat C by 58 metre in race of 400 m.

